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Variations on a theme : The sum of equal

powers of natural numbers (I)
Arkady Alt

This is the first of a series of notes, mostly dedicated to the following problem :

Find, in closed form, the sum

Sp (n) :=
n∑
k=1

kp = 1p + 2p + ...+ np where p, n ∈ N.

These notes can be seen as a continuation of the article “Sums of equal powers of
natural numbers” by V. S. Abramovich, published in Crux Vol. 40 (6).

Let us first consider the simplest special cases of Sp (n) for p = 1, 2, 3, testing
various approaches to find the most suitable way for consideration of the general
case.

1 Finding S1(n) := 1 + 2 + 3 + · · ·+ n

We reproduce the way that young K.F. Gauss apocryphally solved the problem at
the age of 10, by grouping terms. Since

S1 (n) =
n∑
k=1

k =
n∑
k=1

(n− k + 1)

we have

2S1 (n) =
n∑
k=1

k+
n∑
k=1

(n− k + 1) =
n∑
k=1

(k + (n− k + 1)) =
n∑
k=1

(n+ 1) = n (n+ 1)

and thus

S1 (n) =
n (n+ 1)

2
. (1)

We can also solve it by the method popularly known as telescoping, or the difference
method of summation. Suppose that it is possible to find a sequence b1, b2, ..., bk, ...
such that ak = bk+1 − bk, k = 1, 2, ..., . Then

n∑
k=1

ak =
n∑
k=1

(bk+1 − bk) = bn+1 − b1 . (2)

This is justified in Appendix 1.
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Since k2 − (k − 1)2 = 2k − 1 , then

n∑
k=1

(
k2 − (k − 1)2

)
=

n∑
k=1

(2k − 1)

⇒ n2 − (1− 1)2 = 2
n∑
k=1

k −
n∑
k=1

1 (telescoping the left hand side)

⇒ n2 = 2
n∑
k=1

k − n

⇒
n∑
k=1

k =
n (n+ 1)

2
.

Exercise 1 Prove the same identity starting with the observation that

k2 − (k − 1)2 + 1 = 2k.

2 Finding S2(n) := 12 + 22 + 32 + · · ·+ n2

We can find this by analogy with the previous example, by telescoping sums of
cubes and making use of our knowledge of S1 and S0. Since k3 − (k − 1)3 =
3k2 − 3k + 1, we have

n∑
k=1

(
k3 − (k − 1)3

)
= 3

n∑
k=1

k2 − 3
n∑
k=1

k +
n∑
k=1

1

⇒ n3 = 3S2 (n)− 3S1 (n) + n

⇒ 3S2 (n) = n3 − n+ 3S1 (n)

⇒ 3S2 (n) = n3 − n+
3n (n+ 1)

2
=
n (n+ 1) (2n+ 1)

2

⇒ S2 (n) =
n (n+ 1) (2n+ 1)

6
. (3)

Noting that

(k + 2) (k + 1) k − (k + 1) k (k − 1) = 3k (k + 1) ,

we get

n∑
k=1

k (k + 1) =
1

3

n∑
k=1

((k + 2) (k + 1) k − (k + 1) k (k − 1))

=
n (n+ 1) (n+ 2)

3
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and, using the identity k2 = k (k + 1)− k , we obtain

S2 (n) =
n∑
k=1

k (k + 1)−
n∑
k=1

k =
n (n+ 1) (n+ 2)

3
− n (n+ 1)

2
=
n (n+ 1) (n+ 2)

6
.

This method may appear non-obvious, but the trick is one that is often used in
combinatorics and probability theory, and well worth learning. The heart of it is
that the falling factorials

(k)n := k(k − 1) · · · (k − n+ 1)

and rising factorials
k(n) := k(k + 1) · · · (k + n− 1)

play better with their neighbors than powers do. In particular,

(k)n − (k − 1)n = n · (k − 1)n−1 and k(n) − (k − 1)(n) = n · k(n−1) . (4)

The case n = 3 of the first identity is what we started with.

Exercise 2 Prove (4).

Exercise 3 Use (4) and (2) to show that

n∑
k=1

k(m) =
n(m+1)

m+ 1
.

3 Finding S3(n) = 13 + 23 + 33 + · · ·+ n3

Exercise 4 Note that k4 − (k − 1)4 = 4k3 − 6k2 + 4k − 1 . Use this, and the
methods of subsection 2, to evaluate S3(n).

This time we will use rising factorials. First, we will find a representation of k3 in
the form

k3 = a+ bk + ck (k + 1) + k (k + 1) (k + 2) .

This can be done by expanding and equating like terms, but (as when finding
partial fractions expansions without repeated roots) it is easier to evaluate by
plugging in values that make one or more summands vanish. By substituting k =
0,−1,−2 in the equation above, we obtain a = 0, a − b = −1, a − 2b + 2c = −8,
whence a = 0, b = 1, c = −3. Since

k3 = k − 3k (k + 1) + k (k + 1) (k + 2) ,

we have

S3 (n) =
n∑
k=1

k − 3
n∑
k=1

k (k + 1) +
n∑
k=1

k (k + 1) (k + 2) .
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We already know the closed forms of
∑n
k=1 k (k + 1) and

∑n
k=1 k. By Exercise 3,

we have
n∑
k=1

k (k + 1) (k + 2) =
n (n+ 1) (n+ 2) (n+ 3)

4

and, therefore,

S3 (n) =
n (n+ 1)

2
− n (n+ 1) (n+ 2) +

n (n+ 1) (n+ 2) (n+ 3)

4

=
n2 (n+ 1)

2

4
. (5)

Exercise 5 Do the same using falling factorials : that is, find S3 (n) by setting

k3 = a+ bk + ck (k − 1) + k (k − 1) (k − 2)

and finding the appropriate sums.

Exercise 6 Prove the identity

k2 (k + 1)
2

4
− (k − 1)

2
k2

4
= k3

and use it together with (2) to obtain the closed form for S3 (n).

4 Recurrences For The General Case

Modifying the ideas of sections 1 and 2, we obtain

(k + 1)
p+1 − kp =

p+1∑
i=1

Ç
p+ 1

i

å
kp+1−i

⇒
n∑
k=1

Ä
(k + 1)

p+1 − kp
ä

=
n∑
k=1

p+1∑
i=1

Ç
p+ 1

i

å
kp+1−i

⇒ (n+ 1)
p+1 − 1p =

p+1∑
i=1

Ç
p+ 1

i

å n∑
k=1

kp+1−i

⇒ (n+ 1)
p+1 − 1 =

p+1∑
i=1

Ç
p+ 1

i

å
Sp+1−i (n)

⇒ (n+ 1)
p+1 − 1 = (p+ 1)Sp (n) +

p∑
i=2

Ç
p+ 1

i

å
Sp+1−i (n) + S0 (n)

⇒ Sp (n) =

(n+ 1)
p+1 − 1−

∑p−1
k=0

Ç
p+ 1

k

å
Sk (n)

p+ 1
(6)

for all p ∈ N, letting S0(n) := n.
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Exercise 7 For any p ∈ N, show that

kp+1 − (k − 1)p+1 =

p+1∑
i=1

Ç
p+ 1

i

å
kp+1−i .

Now, sum left and right sides for k = 1, . . . , n and thus show that

Sp (n) =

np+1 +
∑p−1
k=0 (−1)

p−k+1

Ç
p+ 1

k

å
Sk (n)

p+ 1
(7)

for p ∈ N.

So we have recursive representations of Sp (n) in terms of Sp−1 (n) , . . . , S1 (n). An
easy corollary of this result is the fact that Sp (n) is polynomial of degree p+ 1 in
n (use mathematical induction on (6).)

5 Appendix

Why does the difference method work ? Suppose that ak = bk+1− bk, k = 1, 2, . . ..
Then

n∑
k=1

ak =
n∑
k=1

(bk+1 − bk) =
n∑
k=1

bk+1 −
n∑
k=1

bk =
n+1∑
k=2

bk −
n∑
k=1

bk = bn+1 − b1.

Informally,

a1 + a2 + a3 + · · ·+ an = (b2 − b1) + (b3 − b2) + (b4 − b3) + · · ·+ (bn+1 − bn)

and all terms except −b1 and bn+1 cancel.
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